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SECTION I

INTRODUCTION

In formulating far field conditions for steady subsonic flows

one usually assumes that at a sufficient distance from the body the

flow equations can be approximated by the potential equation linear-

ized for the vicinity of a parallel flow with the assigned free

stream Mach number. If the free stream Mach number is increased,

then the supersonic region which arises at the profile extends and

the boundary at which one is justified in applying far field con-

ditions of this kind moves to larger and larger distances. In the

limiting case where the free stream Mach number is one this boundary

would lie at infinity. The present article derives far field con-

ditions which are applicable if the free stream Mach number is one.

Far field conditions cannot be formulated unless one possesses

analytical solutions by which the far field can be represented. In

a flow with the free stream Mach number one, the basic field is a

parallel flow with the sonic velocity and a superimposed expression

which describes the dominant effect caused by the presence of a

body. This dominant term satisfies a nonlinear partial differential

equation, but ultimately it is given by one expression in the form

of a product hypothesis. Certain parameters which one encounters

in this expression (and which depend upon the size of the body)

must be adjusted as the flow computations progress. To this basic

field perturbations are superimposed which are sufficiently small

so that they can be computed from linearized equations. Some

perturbations of this kind increase faster as one goes to infinity

than the basic "dominant" term described above. The far field

conditions express the requirement that such perturbations are

not admissible.

The investigations are carried out in the physical plane,

even though the hodograph for plane flows is governed by linear

equations. In the physical plane two and three dimensional problemis

can be treated in nearly the same manner. An important aid,



especially in the three dimensional problem is the fact, that the

solutions of the linearized equations can be expressed in closed

form. (Refs. 1, 2, and 3). The author found the approach of

Randall particularly useful.

Using coordinates suggested by the similarity solution for

the basic flow one can map the field upstream of the limiting

characteristic into a strip of finite width in an auxiliary plane.

In this plane perturbations can be treated by means of a Laplace

transform. (This is the technique of Reference 4.) The postulate

that perturbations do not increase faster than the basic flow as

one goes to infinity, in the physical plane, leads to the requirement

that the poles in the right half of the plane for the Laplace transform

vanish. From this requirement the far field conditions are derived.

The behavior of the Laplace transform at some of the other poles

is used to adjust the expression for the basic singularity.

Ultimately, these conditions can be evaluated in the physical plane.

Some flexibility in their application is obtained by means of Green's

theorem. The report derives the underlying theory and the formulae

needed in the practical application. The results hold for plane

as well as for three-dimensional flows.
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SECTION II
PARTIAL DIFFERENTIAL EQUATIONS

We consider the flow over a body at a free stream Mach num-

ber one. Let 0 be the potential that describes the deviation of

such a flow from a parallel flow with the free stream Mach number

one. At a sufficiently large distance from the body this deviation

is small and one can use a simplified form of the potential equa-

tion. In a system of Cartesian coordinates x, y, z in which the

x axis has the free stream direction, this partial differential

equation is

yy zz

where y is the ratio of the specific heats. In cylindrical coordi-

nates x, r, e with y = r cosO, and z = r sine, it assumes the form

y)+l a L(2) 10 (2
2 ax x rr r r + Yee= 0

r

Let 0o be the part of the potential which is dominant at

large distances. In the three dimensional case it is axisymmetric

and therefore satisfies

Y+i 1 (L o )2 + 4 =0 (3)
2 Ix ox o,rr r o,r

The corresponding equation for plane flow reads

+ 2 = 0 (4)- -x (,Do Ix) + o~yy

The Eqns. (3) and (4) may be written as a single equation

2++ a( )2 + = 0 (5)
2 ax o,x n o,rn o"n
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where respectively for plane and axisymmetric flows

a= 0, n = y and a = 1, n =r.

The solution 0 has the form
0

= 3n-2f( (6)

where

(7+1)-1/3 x n-n (7)

The constant exponent n must be chosen in such a manner that cer-

tain boundary conditions are satisfied. One arrives at the famil-

iar equation

2 2
(n2 - f') f" + (-5n+5-a)n~f' + (3n-2)(3n-3+a)f = 0

(8)

The lines C = -= and = 0 are respectively the negative x axis

and the positive y axis. At the sonic line one has Oo,x = 0

therefore it is given by f' = 0. The coefficient of f", viz.
(n 2 2 _ f') vanishes for a value of C for which the generalized

parabola i=(y+l) -/3xy happens to have the characteristic direc-

tion. This is seen in the following manner. The characteristics

of Eq. (5) have the directions

dx/d n =+(y+l) 1/20 1/2

It follows from Eq. (7), that for constant

dx/dn = +(Y+1) 1 / 3 ~nn-1

.I



If

ft - n 2 2 = 0

then

= n-l1 (f) 1/2

One obtains from Eqs. (6) and (7)

= ( -1/3 2n-2

o'x =(y+l) ) V

This leads to the above result. If (n2l2 - f') = 0 and f" is bounded,

then the remaining terms in the differential equation must vanish.
This gives the compatibility conditions for this characteristic.

The line C = const for which this happens is called the limiting
characteristic. All characteristics starting at the body upstream

of the limiting characteristic end at the sonic line, those start-

ing downstream do not impinge on the subsonic region.

The function f must satisfy the following conditions; along

the line where (n 2 2 - f') = 0, f" must remain bounded, the

solution Do must be symmetric with respect to the negative x axis
in the two dimensional case (a= 0), and it must be free of singu-

larities in the axisymmetric case (a=l). Expressions for f are

availabe in a closed form. For the axisymmetric case we shall use

the formulation given in Ref. 3. One finds

n = 4/5 for a = 0 (9)
n = 4/7 for a = 1

The functions f() form a one parameter family. If one solution

is given by

i

5
.... ~ ~~ " . . .. ... .. .( -o = ..... fii .. Illl - . . . ...



then others are given by

f( ) = 3 Y (T) (10)

with

$=-1

where u is an arbitrary positive constant.

Perturbations to this solution are introduced by setting

0+

and considering 4 as small enough so that terms of the second
order can be disregarded. This leads to the following linear

partial differential equation

)(+1) - (, x) + y +4) =0 (12)
ax o,x x yy zz

or in a form which combines plane flows and three-dimensional flows

in cylindrical coordinates

-(y+l) aL (co a L(~ a -L (,a-2) (13)

Notice that the linear operator acting in this equation has a

divergence form. The basic flow is expressed in terms of and
9. This suggests that these independent variables be used also
in the equations for the perturbations. We set accordingly

4(x,n,e) = 4(n,¢,O) (14)

Substituting Eqs. (6) and (14) into Eq. (13) one obtains

(f' -n2 + [f" + (-n2-n +n)c]o - an + 2n~no

-n 2nn - a;,, = 0 (15)
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In a first step toward bringing this equation into a divergence
form we eliminate the mixed second derivative by setting

)= c(p,eO) (16)

with

p = n h(C) (17)

With

h' nc (18)
h f-n22

one obtains

(f'-n 2C2 - + (f', + (-n2-n+an) ]T

f' - [p + (n+c)p' - T 0

fl-n 2 Cp 2 Pe = 0e

(19)

Using Eq. (18) one derives (or verifies) the following divergence

form of this equation

a 1pn+a-2(f,_n ) 2 _ f, Pn+a E ( C
9[ hn+a-i a[(f'-n 2 2)hn+--l P

n+c-2
n- 

0 
-

ae hn+a ,re)] = 0

(20)

The solutions of Eq. (19) will be studied by means of a two sided
Laplace transform for the p direction. For this purpose we set

7



p =exp t (21)

and

ni eXp T (22)

Then, by Eq. (17)

t =T + log h (23)

One obtains from Eq. (15)

(f-n ) (T, ,O) +If" + (-n -n+ctn, (,je

+ 2nl C, (T,i,B) + (-ct+l) T (T,4,0)

TT~ (T'C,1,) - a 0ee(T, rG) =0 (24)

and from Eq. (20)

T [exp(at) f- 2  (t, ,6)] - -2-jexp($t) 22na-
h n+al r at ff- i ) ~-

- a --(exp($t) hn+a-1 Te'(t,cme) o

with (25)

=(n+a-1) (26)

Now the specific form of the function f is introduced. The

function f can be expressed in the following parametric form.

8



For a =0, n = 4/5

=-(1/2)a - 2/5 (2-a)

- = (1/24)a - 1/5 (a2-6a+48) (27)

d/da = (3/10) a- 75(a+(4/3))

The following expression (for a=1) is due to Randall.

For a 1 n = 4/7

= -2a - 2 / 7 ((1/2)-a)

= -(8/9)o 1/7 (-2a2+3o+6) (28)
d_ " -9/7
d- (10/7)9 (a+(l/5))

We list a number of expression in terms of the variable a, includ-

ing some, which will occur later. Let the value of a for the limit-

ing characteristic be denoted by L.

For a = 0

aL = 16/3

h = d - 1/2 (aL -a) -5/6

df/dZ = (1/4)c 11 5 (a-4) 
(

-
2 2 2 -4/5

n -(9/100)a ( 0 +(4/3) (oL - a)

8 = -(1/5)
1l/2 5/6

a(a) =1 (a -a) (30)
sL

b(a) = (25/9)a - 2 (4-a)(aL -a)

c(O) = 0

9



For a = 1
a = 6/5

h -1 / 2 -(a a)7/10 (31)

d /C- =-(8/3) a 37(-a+1)

- n2T"2 = -(200/147)a - 4/ 7 (a+(1/5))(oL-a)

I B = 4/7

a(a) = a (L-a) 7 / 5

b(a) = (147/50) (1-a) (aL-0) - 3 / 5  (32)

c(a) = (3/2)a-1(0+ 1 ) (OLa)2/5

The point c = -= corresponds to a = 0. There one has for a = 0

= (Y+1)- 1/3 x y- 4/5 a 2/5 +

Hence

o = (y+1) 5 / 6 (-x/i)-5/2 2 +

and for a = 1 (33)

o = (y+l) 7/6(-x/P)- 7/2 y2 +

We observed above that for the limiting characteristic (n2r2-f')

= 0. One recognizes from the last of the Eqs. (29) and (30), that

this is indeed the case for a = L

One uses the above formula to replace the independent vari-
able by a. The primary reason is, -of ourse, the fact that ane
then obtains a simple representation for f. The introduction of

a (more clearly of a1/2) has the further advantage that according
to Eqs. (33) the lines a 1/2 . const sweep out the upper half of

10



xy plane from the negative x axis to the limiting characteristic

in a smooth manner as a changes from 0 to aL. In contrast,C tends

to negative infinity as one approaches the negative x axis. In

this regard a1/ 2 would be a preferable independent variable, we

retain a because of certain other advantages.

One has according to the above formulae

for the negative axis a = 0

for then axis a =2; a= 0
a =1/2; a =1

for the sonic line (f' = 0) a - 4; a = 0

a= ; a= 1
for the limiting characteristic a = 1; a = 1

a = L = 16/3; a - 0

a-= L = 6/5; a = 1

The values of a would change if one defines the function !(?)
differently (by replacing p by p times a constant). Certain sim-

plifications would result if one would make aL = 1.

The coordinate changes described above amount to a mapping

from the xy plane to the pa plane. One readily derives the

following relations:

for a = 0

y =pa 1 / 2 (aL -a)5/6

x = -(y+l) 1/3 p 4/5( - a/21)(L -a) 21 3

for a = 1
n = p ai/ 2 (aL ) 7/10

x = -(y+l) 1 p 4/7( - 2 a)(aL -0)2/5

The inverse transformation (needed in the application) is more

complicated. Assume that p is known, then from Eqs. (7) and (10)

= I-l(Y+ 1)-1/ 3x n -n (35)

• 11



The values of a is then obtained from the expressions for Z given
in Eqs. (27) and (28). With these values one obtains from Eqs.

(17), (29) and (31)

for a 0

p= y U-1/2 (aL-a)-5/6

for a 1 (36)

p = r a-1/2 ((La)-7/
10

The independent variable t is expressed in terms of p by Eq. (21).

Notice that for bounded p both x and y tend to zero as a

approaches the value a L At the sonic line one finds for p = const

that dx/da = 0; this means that the line p = const has a vertical

tangent.

Replacing the independent variable by a one obtains from

Eq. (25)

-[exp($t) a(a)a (t,a,O)] + -tlexp(6t) b(a)Ot(t, ,8)]

+ a[exp(Bt) c(a)O (t,0,6)] = 0 (37)

The definitions for 0, a(a), b(a) and c(a) are found in Eqs. (30)

and (32).

The relations to be derived now, are helpful in expressing

the farfield conditions, which appear originally in the t,a,B

system in terms of physical coordinates. Moreover they provide
for some flexibility desirable for practical applications. Let L be

the differential operator acting in Eq. (12) on *. Consider a

fixed curve C in the x, y, z space and two surfaces S1 and S2

12



which have C as boundary. It is assumed that the surface S1
and its normal vector can be brought into the surface S2 and its

normal vector by a continuous deformation. Let R be the

volume swept out by this deformation. Assume that within R

L() = 0 and L() = 0 (38)

where w is some function which satisfies this differential equation.

Then one obtains from

JfL(O)wdxdydz = 0

R

by carrying out integrations by part

i' SiIS2 (39)

where

IISI =ff-(Y+l)o 0 x -OWx)e + (0 W-Wy)e
i'si f I O~ x x y y y

Sl (40)

+( Z -  Z) e ] .d

and II1S2 is the corresponding integral for S2. Here, e , ey and ez
are unit vectors in the respective coordinate directions and d is

the directed surface element (pertaining either to S1 or to S2).

According to Eq. (39) the integral I1ls is invariant against a

deformation of S, provided that the boundary C remains unchanged.

For plane flows the surfaces S are replaced by curves

connecting two fixed points. Let one such curve be represented

by x=x(p), y=y (p) where p -is a suitable monotonically changing

parameter. Let the values of p pertaining to the end points of

this curve be given by p1 and p2. Then one has

13



P2

(i=fY x~ e x + (0, -W w ) y I.

PI (41)

P2

= f [-(Y+1)4,ox(x w -OWx)(dy/dp) - ( yW - OWy )(dx/dp)]dp

Pl

In writing down the corresponding relations in aVlindrica1 0oacd-

". f -efoe'" t'three dixensional case, it svffices ±f one uses
axisymmetric surfaces S1 and S 2* The vector normal to these sur-
faces is then perpendicular to the unit vector in the 6 direction.
The potential for the basic flow, * 0' is axisymmetric, but the

perturbations need not be axisymmetric. Let the surfaces S1 or

S2 be given by x = x(p), r = r(p). One then obtains from Eq. (12)

6=27r P22 = -(y+l)r o ( W - ow )drd6-r(y w-ow )dxde (42)

2=1 o'x x x y y
=0 Pl

The expression, Eq. (42), can, of course, be obtained from Eq. (40)

by specialization to an axisymmetric surface.

The corresponding relation obtained from Eq. (25), again

for an axisymmetric surface, is:

27r P222

I3 = f fexp (fOt)h (%w -,w)dtdO

e=o (43)

(fltn 2 2 )hn+o& -i t t 81

14



where and t are considered as functions of the parameter p.
Here = 0(t,r,8) and w=w(t, ,e) and these functions satisfy

Eq. (25). For two dimensional flow (a= 0), the dependence upon

the third coordinate (here 0) does not appear and the integration

over 0 is omitted.

Finally, one has as a corresponding expression in the t,a,B
system

6=2 p2

I4 =f fexp (Ot) ta(a) (a W -OWa)dtde-b(a) tW-ow )dade] (44)

0=0 p 1

Eqs. (41) through (44) are, of course, in essence the same except

for the choice of the coordinates. All arise from a volume integral
of the divergence of the same vector multiplied by w. They may,
however, differ by constant factors because such factors have been

disregarded in going from one form of the differential equation to

another one. One has

13 = -(Y+l)-/31i

13 =-v(3/i0)1 4  for a= 0 (45)

13 =-p(20/21)I4  for a= 1

We shall find that the formulation of far field conditions leads
to expressions of the form (44). The surface S represents the
distant boundary of the computed flow field, 0 is the perturbation

potential, and w is given by certain particular solutions of the
equation for the perturbation potential which plays the role of test
functions. The theory will be developed in the a,t system, while
for the practical applications the xyz system will be used.

Equation (39) provides flexibility in the choice of the distant

boundary surface.

15
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SECTION 1.

FORMULATION OF A BOUNDARY VALUE PROBLEM

The basis for the future discussions is Eq. (37). This

is a partial differential equation in the a,t,O space. In

principle, one might also use Eq. (25), but the introduction of
a instead of C simplifies the evaluation. The field between the
negative x axis and the limiting characteristic is mapped into the

strip 0< a < a L . In the following derivations we assume that

the distant limit of the computed flow field is axisymmetric,

although the flow itself need not be axisymmetric. The map of
the outer limit of the computed flow field is then a curve C

in the a,t plane which starts at the negative x axis (a= 0), and

ends at the limiting characteristic. Let this curve be given by

t = t s(a).

(For a field without axial symmetry the outer surface of the

computed flow field maps into a cylindrical surface to be denoted
by S in the t, a,6 space with the curve C as a directrix. and

lines parallel to the 0 axis as generators. In this case, one has
0 < 0 < 2w, with periodicity conditions at 6= 0, and 0 = 2n.) The

far field conditions will appear as global relations between 0 and

its gradient at this surface. At the boundary a= 0, one has for

= 0 (plane flows) the requirement that the solution be either
symmetric or antisymmetric (actually with respect to a /2), for
the case a= 1 (three dimensional flows), one has the requirement

that the solution be free of singularities. Details will appear
in the course of the investigation. Boundary conditions at the
limiting characteristic will be formulated later.

The far field maps into the region to the right of the surface

S, (t= tS (a)). The function 0 is continued to the left by setting
*=0.

The function 0 so defined satisfies the differential

equation (37) in the whole strip 0 < a <at except for the

16



surface S where € and gradient 4 have jumps. Let

AO(a,6) = 0(t s(a) + O,a, e) - *(ts(a) -0, a,6)

A)t(a,0)=0t(ts(a)+ 0,e) - 4t(ts(a)-0,a,8) (46)

A0a.(a,O)=0 (ts(a) + 0, a, 0) - C(ts (a) - 0, a,e)

There exists, of course, a relation between Aot, Aa,and AO)
The 0 component of the gradient does not enter, because the

surface S is assumed to be axisymmetric.

For large values of t the perturbations to the basic flow
are allowed to have at most the same order of magnitude as the

basic flow itself. The form of the basic flow is given by Eq. (6).
One has n = 4/5 for a = 0 and n = 4/7 for a= 1. n is connected
with t by Eqs. (17) and (21). Along a line a = constant (which

coincides with a line = constant), the potential of the basic
flow therefore behaves as exp (2t/5) for a = 0, and exp (-2t/7)

for a = 1. We therefore impose the conditions

exp(-2t/s)(t,a,8) bounded for t- -+-;a = 0

exp(2t/7)4(t,a,8) bounded for t-e- + w;c = 1. (47)

For t < t s(a) one has ¢= 0, by definition. This is compatible

with the postulate

exp((-2/5)-c)t)0(t,a,6) 0 for t- - ; = 1

(48)

exp((2/7)-e)t)0(t,a,e) 0 for t- - ; a=l, e > 0.

The problem defined by Eqs. (45), (47), and (48) is always
solvable even for arbitrary functions A0, A4t , and A ., but
then there is no guarantee that -= 0 for t < t()

In order to examine whether a set of functions 0(t (a), a,8)

4t(ts(a)a,8) and a (ts (a),a,8) pertain to a field which satisfies
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the far field conditions, we set 6.0, 40t' and A£a equal to these

functions 0, t' and 00 and solve the'above problem. The

function 0(t, Ot, e) so obtained will satisfy Eq. (47); these

are the far field conditions; but only if 0 0 to the left of

the surface t = t (a) will the limiting values of 0, Ot' and 00
obtained as one approaches this surface from the right, be equal

to the functions 0(tS, ae), Ot(tsoa) and 0 a(ts ,,) which are

to be examine and with which the computation started.

Conditions on 0(tso,e), Ot(tso, e) and 0 a(t ,oe) which
ensure that 0 0 to the left of t = ts (a) will therefore con-

stitute the desired far field conditions. In the next section

such conditions will be derived by means of Laplace transform.

In the case a = 0, the sonic line (of the basic flow) is

given by a = 4. This can also be seen from Eq. (37); the co-

efficients a(a) and b(a) of 000 and 0tt have according to Eq.

(30), the same sign for a < 4 (elliptic region) and the opposite

sign for a > 4 (hyperbolic region). The direction of the charac-

teristics is determined by the specific form of the functions

a(a) and b(a). One obtains

dt = 5 (a-4) 1/2 , a= 0 (49)=a - 3 a1/2 (16/3) _a) , =0(9

Hence, for the vicinity of a = aL = 16/3

t - * -log (aL- a) + const.

As a aL' t approaches ± - for the two families of

characteristics. Incidentally, the integration required in

Eq. (49) can be carried out in closed form

t = ±f(10/3)loga [ 1 / 2 - (a-4)1/2] + (5/3 log [a1/2 + 2(a-4) 1 /2]

(50)

- 5/6 log[16/3) -oi} + const.
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We mentioned before that because of Eq. (21) for each

finite p, which is equivalent to finite t, x - 0, y - 0, or r *0,

as a + aL . Obviously, the outer boundary of the computed flow

field given by the surface S cannot extend to the origin as one

approaches the limiting characteristic. It will terminate there

at a finite value of y. This behavior is more clearly represented

in a a,T plane (T is defined in Eq. (22). Instead of Eq. (37),

which originates from Eq. (25) one would then deal with the counter

part of Eq. (24). One has for the characteristics (from Eqs. (23)

and (49)

dT/da = dt/da - dlogh/da = (1/3)a-1 (16/3-a)-I

1/2 1/2 (51)
[±5al (a-4) + 4(2 -a)]

The term in the bracket is regular for a = 16/3; it has a zero of

the first order if one chooses the positive sign. This cancels

the factor ((16/3) -a) -1 in front of the bracket. For this family

of characteristics T assumes a finite value at the limiting

characteristic.

For a = 1, one first carries out a Fourier decomposition

with respect to the 0 direction and considers each component

separately. One then obtains analogous results.

1
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SECTION IV

LAPLACE TRANSFORMATION

The problem formulated in Section III is now treated by

a two sided Laplace transform. The starting point is Eq. (37).

First we make a Fourier decomposition of 0(t,a,8) with respect

to e.

= (m)(t,a) exp(ime) (52)

M=-00

Hence 21

4(m) (tC) - f (t,a,6) exp(-im6)de (53)

0

The Laplace transform of * (m)(t,a) is defined by

(m) (s,cy) = f *(m) (t,a) exp(-st)dt (54)
-00

We substitute Eq. (52) into Eq. (37) and consider only one Fourier

component. The resulting equation is multiplied by exp(-(s+8)t)

and integrated from t = - to t = +=. One then obtains

t (ai) +)f f . (a(a5@(m) )+ b( )(8(m5 + (in)

-0 t sa) (55)

-m 2 exp(-st)dt = 0

In rewriting this equation in terms of *(m) one must take into
account that m, ) and 0(m) are discontinuous along the curve

t a
t = t s(a). The individual terms are considered separately. One
has the trivial result

20



t s a)+0

J J (-in c(a)O$ (t,ar) exp(-st)dt in c(a)*(m)(s,a)) (56)

-00 ts(a)

A familiar procedure gives

f f b(a)(O$ t ~(t,a) + 0 t (t,a)) exp(-st)dt

- t t(a)

b(aY) {-[(+s)A (m)() + AO() exp(-st5 (a))

+ (as + s2 (, (,a) } 57)

The notation AOim) etc. used here is analogous to the definition

Eq. (46). For the evaluation of the remaining term we rewrite the

following expression in terms of (iM) (t,a)

[a (a) a (a t (L ) + f0 M

a*m 1 ata) a[J +0 ''(t, a) exp(-st) dt

-00 t~a

ts (a) +oo

~- a- -(a)---t. AO (m) (y) exp (-sts (a) + aU[f +f (m(tcyex(-)d

-00 t5(a)

D G ( i n ( i n)a

(a) +00 t (aY)+0

a'(af (m) (t,a)exp(-st)dtl + a(a 0ffMa (tia)exp(-st)dt]
fI +f t( (a)

00 t 5 (a) -0tSG

a - a) dJaJ6(in) cexp-s 1a a)d /aAOm)0x(s(a
3 {-a ( (- ()}(a) (dt Id S a (a

*(M)
+ f - a(a) (t,ac)]exp (-st) dt (58)
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Substituting Eqs. (56) through (58) into Eq. (55), one obtains

S[ )(m) (s, a) + [b(F)l(s + s) - m2 c(a)] lm)(s,a)

= r ( m) (s,a) (59)

with

r(m) (s,a) = b(a)[(8+s)A0 (m ) (a) + A (i) (a)]exp(-sts(a))t

+ f-a(a)(dt /da)A O) (a)exp(-st (0)}-a(a)(dt /da)A (aU)exp(-st (a)
8c S B CY S

(60)

Eq. (59) is an ordinary differential equation for *(m). The

argument s plays the role of a parameter. The boundary condition

for a = 0 arises from the properties of the function (m)(t,a).
For a = 0 one obtains the requirement that *, considered as a

1/2function of a , be either symmetric or antisymmetric with respect

to a = 0. For a = 1 one has the requirement that * be nonsingular.

To obtain conditions at the limiting characteristic, we

consider the problem in the T,a plane. One has, of course,

,(m)(t, 0) = (M) T,

We define
+00

(M) (s,C) = f (m) (-,a) exp(-sT)dt (61)

One iinds with Eqs. (17), (21), and (22)

(m)(s,a) = hs *(m) (s,) (62)

22
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According to Eq. (22), T is finite if y is finite. This holds

in particular at the intersection of the surface S with the limiting

characteristic. For finite T the function 0(m) is bounded along

the limiting characteristic. The behavior of 0 postulated in

Eqs. (47) and (48) carries over to O(m)and holds also in terms of

T. Hence it follows that (m) is bounded

for (2/5) < Re(6)<(2/5) + e, if a = 0

C > 0 (63)

and for (-2/7) < Re(s)<-(2/7) + e, if a = 1

The behavior of p(m) is then found from Eq. (62). We shall refer

to the strip in the s plane characterized by Eqs. (63) as the

original region of definition of the Laplace transform. The Laplace

transform in the remainder of the s plane is obtained by analytic

continuation.
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SECTION V

THE HOMOGENEOUS PART OF EQ (59)

in preparatiJon of the evaluation of pm( 5 ),we discuss

the solutions for the homogeneous part of Eq. (59). We write this

equation in the form

d. (a(G) (dG(m)/da) + [Xb(a) - m 2c(c,)]G (m) =0 (64)

with

X B (s + B) (65)

Important for applications is that, because of the special form of

a(a), b(a) and c(a), defined in Eqs. (30) and (32) this is a

hypergeometric differential equation. If one sets in analogy to

Eq. (62)

g m (a) = hs G ()(a)

= s2(aLCO-)5s/6 G(a); a= 0

,-s/2 (a -) -7s/10 G(in)(0); a = 1 (66)

then one obtains the following differential equations

a 2((16/3)-a) Cd 2g/da 2) + ((4/3)+(8/3)p)a(2-a)(dg/da)

+ s(s-l)(a+(4/3))g = 0, a= 0 (67)

c2(6-50)(d 2g in/d 2 ) + 12(s+l)a(l-2a) (dg(in)/da)

+ 3(s 2_M2 )(l+5a)g~m = 0, a= 1 (68)

The second equation is given in the article by Randall.

One readily verifies that
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* = IP)exp(st)epium) - g~m (i) ~axpO(Sr)exp Ume)

M 9(m (0)y $*XP U50) (69)

and (because of tEqs. (65) and (23))

4' = G~)C~x((saiepi = h- 2 p- (ii) S$
~.aexp-~-~,ex~im) (a)y exp(ime)

are particular solutions of Eq. (37), and of Eq. (13) if one returns

to the coordinates of the physical plane. The second -fodrm is

singular at the limiting characteristic if the first form is regular,
because of the factor h2- 8 The totality of the solutions of

Eqs. (67) and (68) are expressed by Riemann's, P-functions,

-0 Go16/3(=aOL)

_(/)1/) 3s (1/6)-(5s/3) (70)

(in P -,(s/2)+(i/2) (6s/5)4-(7/l0)+R 0 L a] a 1

L-(/2) -(m/2) (6s/5)+(7/l0)-R -(2/5)-(7s/5)j

(71)

where

R = [-(3/2)m 2 + (1/4) + (3/50) (7s + 2) 2]l /2 (72)

Because of the form of h (Eqs. (20) and (31)), the differential

function G satisfies a hypergeometric equation with the same

singular points but different exponents. For the vicinity of

a = 0, the exponents of the differential equation for G are

increased by s/2; particular solutions for G, therefore have the

form G = P(a) and G = 0l/2pa for a = 0, and P - a/2 (a) and
P =a -m/2 P(a) for a - 1. The solutions for a = 1 which are free
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of singularities start with the term am/2 . Power series which

start with the constant term are denoted by P(a), used in a

generic sense.

We use the self-explanatory notation

g = a-s/2 §sym

a- (s/2) +(1/2) (73)

(m) -(s/2)+(m/2) 9(m) a 1

Gsym = (aL-) 5s/6 ym

Ganti (a La) Ss16ai/2 §anti (74)

G(m) = (aL-a)7 s/10 am/2 §(m) a 1

Then one has for the totality of the respective solutions

sYM = P 0 -(5s/6)+(1/3) 0 /0

1/2 5s/2 (1/6)-(5s/3) .

0 CO1
4anti = P  0 -(5s/6)+(5/6) 0 L

-1/2 (5s/2)+(1/2) (1/6)-(5s/3)
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= 0 (m/2)+(7s/l0)+(7/10)+R 0dc

L M (m/2)+(7s/1O)+(7/10)-R -(2/5)-(7s/5)

Now, the solution with exponent zero at z =0 for an expression

P 0 a 0 Z

1c b c-a-b

is given by Gauss' hypergeometric series

F(a,b,c,z) = 1 + ab z + a (a+l) b(b+1) z +. (75)C11 c(c+1)21

Of course, the notation a,b,c for the parameters of the hypergeometric

-series (which is traditional) has nothing to do with the functions

a(c), b(a), c(a)defined in Eqs. (30) and 32).

Then one obtains

for 4sy : a = -(5s/6) + (1/3); b = (5s/2); c = 1/2 (6

for g~anti: a =-(5s/6) + (5/6); b = (5s/2) + (1/2); c =3/2

for'qin a = (m/2) + (7s/10) +(7/10) + R

b = (m/2) + (7s/10) +(7/10) - R

c =M+ 1

For a a one of the exponents is zero, the other exponent

is given by

c - a - b = (1/6) -(5s/3) for a = 0

ii and

c - a- b= (-2/5) -(7s/5) for a= 1
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One has the following relations between the hypergeometric series

at z = 0 and z = 1

F(a,b,c,z) = r(c)r(c-a-b) F(a, b, 1 + a + b - c, 1 - z)r (c-a) r (c-b)

+rF(c)rF(a+b-c) lzC-a-b
+ r(a)(b) (1-z) F(c-a, c-b, 1+c-a-b, l-z)

To apply this relation to the function 4 we define

41 = F(a, b, c, a/OL)

§2 = F(a, b, 1+ a+b-c, (1 - (a/L)) (77)

§3 = (l-(o/aL) c-a-bF(c-a, c-b, l+c-a-b,(l-(a/GL)

Then one has

- r(c) r (c-a-b) + r(c) r (a+b-c) (78)
r(c-a)r(c-b) r(a)r(b) 3

We notice that the function 42 which is regular at a = L is

dominated in this vicinity by 43 if c-a-b < 0. This happens for

Re s > 1/10 if * = 0 and for Re s > -2/7 for a = 1. These regions

include the original regions of definition of the Laplace transform

given in Eq. (63). The same holds for the corresponding functions

G (see Eq. (74)).

In Eqs. (69) we had used the functions G to define particular

solutions of the differential equation for *. These expressions

can be used to obtain some insight into the representation of the

flow field. One expects that the function * will have the correct
symmetry properties at the negative x axis (a - 0) and that it will

be free of singularities at the limiting characteristic. For y
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finite, the first of Eqs. (69) then implies that at the limiting

characteristic g () must be regular and according to Eqs. (73),

this implies that (m) and, of course, also g and ganti must

be regular. Such regular solutions are obtained if the series for

g terminates after a finite number of terms, or that the coefficient

of g3 in Eq. (78) vanishes. This leads to the condition that either

a or b is a negative integer, (provided that (c-a-b) is not a non-

negative integer). For a = 0, and gsym one obtains by Eq. (76)

from

a = -(5s/6) + 1/3 = -k (79)

s (6k/5 + (2/5); k = 0, 1, 2...

and from

b = 5s/2 = -k;

s = -(2k/5), k = 0, 1, 2 (80)

for a = 0 and anti one obtains

s = (6k/5) + 1; k = 0, 1,2...

and (81)

s = -(2k/5) - (1/5); k = 0,1,2...

In neither of these cases will c-a-b be an integer. These values

of s are evenly spaced. The spacing for negative values of s is

1/3 of that for positive values of s.

One notices that the square root R which occurs in Eq. (71)

for a = 1, has opposite signs in a and b. Therefore, no square

root appears in the coefficients of the hypergeometric series (76).

The condition for the termination of the series for 4(m)

that a or b be a nonpositive integer gives

(m/2) + (7s/10) + (7/10) *R = -k; k = 0,1,2...

where R is given by Eq. (72). This is a quadratic equation for s,

which ultimately leads to
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s = (l/7)[(2k+m-l) t [24k2 + 24k(m+l) + (6m+1)2] I /2, k = 0,1,2

(82)

A corresponding formula is found in the article by Randall (set
k =N 0 - 1). One obtains

for m = 0, k = 0, s - -2/7 and s - 0
for m = 0, k = 1, s = -6/7 and s - 8/7 (83)

for m = 0, k = 2, s irrational

for m = 1, k = 0, s = + 1

for m= 1,k=1, s= -9/7 and s - 13/7

Here it can happen that c-a-b is simultaneously a non-negative

integral number. Values can be found by a systematic search. One

has, for

c-a-b = -(7s/5) - (2/5) = kI1  k1 = 0, 1, 2,...

s = -(5k 1/7) - (2/7)

For these values of s one obtains

b = (m/2) + (1/2) - (kl/2) - (1/2) [6(k 2 - m2 ) + 1]1/2

For b to be a nonpositive integer it is necessary, but not

sufficient, that the radicand 6(k 2 - m ) + 1 be the square of an
2 1

integer, say k3. Then

(1/6)(k 2 - 1) = (1/6)(k 3 - 1)(k 3 + 1)

must be an integer. This means that k3 + 1 or k 3 -1 must be

divisible by 6.

k 3 = 6k4 + 1; k4 = 0, 1, 2
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Next, one examines whether there are integers k 1and m so that

k2=(1/6) (k3 2- 1) + m2

This is done by systematically varying m. Only a finite number of

terms need-be examined. If m is increased, then the value ofk1
(obtained from the last equation k 1) increases, but more slowly

than that of m. Considering k I as a function of m, not necessarily

an integer, one has from the last equation

dk /dm = ml (1/6) (k3 _ 1) +' m2 1 1/2 < 1
1 3

The search can stop after the difference k 1 m becomes smaller

than 1.

We i ist some of the values

k 4  0, k 3  t+ m 0, k 1 =0 b 0

m 1, k1 =1 b=0

k 1, k3  5, (1/6) (k 2_1) = 4, m = 0, kc = 2, b = -3

kc 7, (1/6) (k 2_1) =8, m = 1, kc 3, b = -4

kc 2, kc 11, (1/6) (k 2 _1) =20, m =4, kc 6, b = -64 3 3

2k 3 =13, (1/6) (k 3-1) = 28, m =6, kc1 =8, b = -7

This shows that cases are possible where -b < c-a-b and where

-b > c-a-b. One has in the basic flow (from Eqs. (6) and (9))

P= y2/5 f(c) for a =0

0= r2/ f(o) for a = 1(4

One will postulate that none of the perturbation will dominate

the basic flow as y -~or r - .According to Eq. (69), one must,

therefore, exclude for a 0 particular solutiens with Re s > 2/5,
and for a =1 particular solutions with Re s > -2/7.
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The role of the particular solutions for negative values of
s is not obvious. There is, for instance, the question whether the
particular solutions with the special values of s obtained here are
suitable to represent the propagation of a singularity along the

limiting characteristic. Such a singularity would arise if it is
present in the profile shape. The discussion of the problem by
means of the Laplace transform which we have chosen here will

answer questions of this kind.

Some of these particular solutions have simple interpretations,
which are important for the applications.

The particular solution for s = 0 gives 0 = const, this is
certainly an admissible (although uninteresting) perturbation.

Particular solutions for a = 0 and s = 1 give = y, this trivial

solution is excluded because it alters the boundary conditions at
infinity.

An expression (for a= 0)

= (y - Ay 2 / 5 (Pj + A) 3f'() (85)

with

= (p + Ap) -(y + 1)-i 3 (x - Ax)(y - Ay) - 4 / 5

is a solution of the original problem Eq. (1) with zz omitted, for
it is the expression (10) with p replaced by p + Av in-a system of
coordinates in which the origin is shifted by Ax in the x direction
and by Ay in the y direction. Considering Ap, Ax, and Ay as small
and setting (as before)

- P-l(y + 1)-1/3 x y-4/5

one obtains

0 = (y - y) 2/553 + AV)3f (b

= y2/5P 3i +) + P2 y2 / 5 13!(-) - "(df/dZ)]
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- AxP2 (y+1)-I/3Y-2/5 (df/dT)

- Ayu3 y- 3 1 5 [(2/5)f - (4/5)Z(df/dZ)]

+ higher order terms

It follows that perturbation solutions with s = 2/5 express a

change of p (the intensity of the basic perturbations), symmetric

particular solutions with s = -2/5 and antisymmetric particular

solutions with s = -3/5 represent, respectively, a shift of the

origin in the x and y directions. Using the Eqs. (27) and (29),

one can express these functions in terms of a and identify them

with the functions qsymm and §anti defined above. One obtains,

for instance, using the definitions (73)

3f(r) - (d/d ) = 5a - 1 / 5 = 5 (a, 2/5))

where the second argument of g refers to the value of s. Therefore,

ultimately

0 = (y-Ay) 25(11+A11) T

= y 2 /5 13 () + APP2 5y 2/ 5 -1 /5 sym (c, (2/5))

+ Ax(y+l) -1/3 P2 Y-2/5 1/5 sym (o, -(2/5)) (86)

Ay P (1/2) y (/2)+(3/0) ant (, -(3/5))

Analogous discussions are carried out for a = 1. One starts

with

= (P+ P) 3( r + Ar)- 2 / 7 y(C) (87)

with

= ( + A)-l (y+ lW-i 3 (x - Ax)(r + Ar) - 4 / 7

and
2 2 2

(r + Ar) - (y - Ay) + (z - Az)
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setting

S -l(Y + 1)- 1/3 x r- 4/7

Then one obtains by considering Ap, Ax, Ay, and Az as small

= /3 r 2 / 7f(Z) + A,, 2 r-2/7 (3f (d-f/d7)

-6xp2 (Y + i)-1/3 r-6/7 (-df-/)

+3r- 9/7((2/7)f + (4/7)Z(df/dC) (Ay cos e + Az sin 6)

or

= ( + AP) 3 (r + Ar) -  f(

p r -2/7 y( - A11215 r-2/71/7 (0) (, (2/7))

+ Ax 2 (y+1 ) - 1/3(8/3) r - 6 /
7ca3 / 7 ( 0 ) (c,-(6/7))

3 r-9/7 8/7 (1) (
- v (16/3)r a 8 (0,-(9/7))

(88)
(Ay cos 8 + Az sin 8)

+ ...

These equations can be used to identify the modifications of a

basic field (that is, the changes Ap, Ax, Ay, and Az) as one

proceeds from one iteration to the next one. Eqs. (86) and (87)

are rewritten, using Eqs. (74), (29) and (31). One obtains

from Eq. (86)
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= (y - Ay) 2/ 5( + A)3 y (89)

2/5 3-- 2y/ f() + A1 2 5 G sym(,2/5)exp(2t/5)

+ Px 2 (y+l) - I1/ 3 Gsy(a,-(2/5))exp(-2t/5)sym

+ 3 (1) G (,-(3/5))exp(-3t/5)

- y (1/2) Ganti

+

and from Eq. (88)

= (P + AP) (r + Ar) 2 /7 f(M ) (90)

I = 3r-2/7() _ P2 15 G( 0 ) (a,-2/7)exp(-2t/7)

- (2 + 1/3 (8/3)G() (c,-6/7)exp(-6t/7)

- P 3 (16/3) G (1 (c,-9/7)exp(-9t/17)(Ay cose+Az sine)

The Wronskian of the functions G1 and G2 (for all cases) is

defined by

W(G1 G2) = W(s,a) = (DG/o) G2 -(aG 2 /;a)G 1  (91)

The following relation is a consequence of the general theory of

ordinary linear differential equation

a(a)W(s,a) = k(s) -

where a(a) is one of the coefficients occurring in the differential

Eq. (64) for the functions G. Important is the fact that this

product depends only upon s. The expression k(s) will appear in

future formulae. For a derivation, one writes Eq. (64), once

for GI, a second time for G2, multiplies the first equation by G2,

and subtracts from the result the second equation multipled by G1.

One obtains
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(a (a)--)J G2 - o(a(a)-.--J G1 = 0

and, hence (92)

a[ a G r (G 1 2  )]
La(a)v- G 2  -Da G1  =0

which leads directly to Eq. (90). To compute the function k(s),

one needs the functions G1 and G2 and their first derivatives with

respect to a at one station a, for instance at a = aL . One has,

because of Eqs. (74)

W(Gsym,l' Gsym,2) (aL - a) 5s/3 W( sym,I, 4sym,2 )

W(Gti, Gti 2 ) = (aL -)5s/3

antil' -nt aW(anti,l, 4anti,2 )

(m) (m) 7s/5 m (m) (2

W(G 1  G 2  (CL a) a W()1 2 (93)

Because of Eq. (78), one has

W r(c)r(a + b - c) W( 3  2 (94)W(41 = 42 (a) F(b) (3 2

This is now evaluated for the vicinity of a = aL . One obtains

using Eqs. (77)

W(-1 2 ) = (L 1 - (a/aL))c-a-b-l(c-a-b) r(c)r(a+b-c)
' 2 =r(a)r(b)

(95)
= C(a+b-c) _ a) c-a-b-l r (c) r (l+a+b-c)

L (aL F(a)r(b)

Using the values of c-a-b listed before Eq. (77), and the expressions

a(a) to be found in Eqs. (29) and (30), specialized to the vicinity

of a = aL' one finds from Eq. (92)
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k 5)= (1/3)-(5s/3) r(a)r(b)ksym (S L r (c) T(1+a+b-9) ; a = 0

k (S)=a --(4/3) -(5s/3) r(a)r(b) a=0(5atiS L r (c) r (+a+b-c) =(5

k(m) (s) = 0 -m- (7/5) -(7s/5) r(a)r(b) 1L r (c )r rJ.+a +b-c T a

where the pertinent values of a(s), b(s), and c(s) are lisad in

Eq. (76). In Eqs. (79) through (82), the values of s for which

a or b are nonpositive integers have been listed. For values of s
in the vicinity of point s P where either a or b is a nonpositive

integer--k, one has

r(a) =l~ 2 (-1)l (96)
s s~ (da/ds)r~~ 2 F 0(1

r(b) s-s bdsrk 2 ) + 0(1) (97)

With these formulae, the dominant part of k(s) can be determined

provided that none of the other factors vanishes.

Let s Pbe a point at which, simultaneously

b = -k 2  k 2 = 0, 1, 2 ...

c-a-b = e =k 1 1k 1 = 1, 2,

Let for neighboring points

b = -k 2 + (db/ds) (s-s ) -k 2 + Ab

c-a-b = e =k 1 + Ae

Then one obtains

r(b) Ae k-C 2  r(k1 ) k1= 1, 2, . (8r(1+a+b-c) =Ab ~ r(1+k2T k2 = 0, 1, 2, .. (8

r(b) 12 k1  0

r(l+a+b-c) = b r(l+k2) k 2 =0, 1, 2 ... (9
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One obtains from Eq. (78)

a = -k 2, or b = -k2

r(c)r(c-a-b) k2 = 0, 1, 2, ... (100)
r (c-a) r (c-b) 2 ;c-a-b # 1

kI = 1, 2,

The formula is applicable also for c-a-b =-kI, kI1 = 1, 2, 3,
b = -k2 ' k2 = 0, 1, 2, ... (a case which does not occur), but then

a limiting process is necessary, because r(c-a) = r(-k 1 +b) -

r(-kl-k2 ).

If at a point s = sp, c-a-b = 0, then one has c-a = b, c-b = a.

Therefore,

§ 2 (o, sp) = §3(a, sp) = F(a,b,1,1, l-(G/GL), c-a-b = kl=0 (101)

If, simultaneously, c-a-b = e = 0, and b = -k2 , k2 = 0, 1,2,...,

then §l' §2' and §3 are polynomials. One obtains

4l(a, = - )k 2 r(l+k 2 ) L4 q 2 (a,Sp), = (102)
2 ra k2= 0, 1,2,...

Eq. (102) is not the limiting form of Eq. (100).

Now we consider cases where c-a-b = e = kilk I  1, 2,

and b = -k2 , k 2 = 0, 1, 2,... Specializing the second of Eqs. (77),

we define for k 2 < k 1

g2 (a, sp) = lim F (a,-k 2, 1-kl+ ,l-(G/0L))c 0

For c # 0, and, therefore, also in the limit e ), the function F is

a polynomial which terminates with the power (l-(a/a L))k 2.

Alternatively, we can write

S 2  (a+i) (l+k2 ) r(k1 -i) 1 I_-L) i

92 (a L E -r) l+c 2 -'r) T(k )  (i+l)
i=O

k 2 < kI1  (103)
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We define, for k > kI , as 2' the same sum, but terminating with

the power kI -1

(a+i) r(l+k2 ) r(kl-i)

92( SP) F (a) r(l+k 2-i) r(k I ) r(i+l) i )
i=O

k 2 > k, (104)

One obtains

r(c)r(k 1 ) c-a-b = kI, I = 1, 2,...
§i(0, sp) = r(kl-k2 )(kl+a) g 2 (a, s ),12 1b = -k 2 , k 2 = 0, i, 2,..

k 2 < kI1  (105)

One obtains, for kI < k2 , from Eq. (77)

k1
43(0, sP) = (l-(G/aL)) F(kl-k 2 , kl+a, l+kl, (l-(C/aL)) (106)

This is a polynomial which begins with the power (1-(a L ) and

terminates with (l-(o/CL)) . Here one obtains

k 1-k2 r(c)r(I+k 2 ) c-a-b = ki, k1 = 1, 2,

§-cfS- (a)r(1+k 1) §3 ' b = -kc2 ' kc2 = 0, 1, 2,...

(107)

Notice that the coefficient of 93 is not the limit of the coefficient

of §3 in Eq. (78).

Also needed are expressions for 02 in the vicinity of points

S = S where c-a-b = ki = 0, 1, 2,... The case k 0 is

covered by Eq. (101).

If b -k2 , k2 = 0, 1, 2,..., one obtains
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kl-1k i r (a+i) r_(b+i) r (k 1 -i) 192(,S F - Fa) -r (b) -7 r ( I Til) (l(/L)i

i=O

00

k E d rS-S r(a+i) r(b+i) r(1+Ae) r(1-Ae) 1
(-) 1 ds Ae r(a) r (b) T (kl-Ae) T (l+i-kl-Ae) r (1+1)

i=k 1

(1/- (/L))i

k 1 1 r (a+k1 ) r (b+k I ) 1

9-s de/ds rT(a) rTET-- r  3(, ,Sp)

k = 1, 2, 3,

b # -k2, k2 = 0, 1, 2,...

c-a-b = e = k + Ae
1 (108)

AlI functions of s are to be evaluated for s = sp. Only the

general structure of this formula will be needed. For the

evaluation of derivatives (not needed in the present context) we

note the following formulae.

d P(a+i) 0, i = 0 1
da log r(a) 1 1 1

a a1 a+i-i 1

s-s 2 2 (109)

d P _ -d2Ae/ds2,ds Ae(s) 2(- eds2 ,c-a-b-=k I + e

() 2(dAe/ds)z

In cases where, in addition, b2 = -k 1, 2, ... one has

g 3 (0, sp) = (l-(/aj) F(kl+a, k 1 -k 2, 1+k1 , (l-(a/OL)) (110)

For kI > k2 , this is an infinite series, for k, < k2, it is a

polynomial. One has
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urn V2 a's) ' 2(G'SP)

p
+ (-)k 1 k 2 b r(a+k 1)r(1+k 2)r(k 1-k 2)

(-) (rn e-) r(a)r(k )r(l+k1  §3(a'SP)

b = -k 2 + Ab, c-a-b = e = k1+ Ae, k 2 < I1

(111)

The function 92is defined in Eq. (103). The factor of 43is
bounded. Finally,

- 1 k2 kI d ss a+i) r(1+Ae) r(1-Ae) ____________

+2as) 9 a-d Ae -rT- T(k +Ae) r(1+i-k1-Ae) r(l+k2-Ab-i))

(1-(G/a )r(1+i) L

1 1 r(a+k 1  ____________2)_

+ k2 -k 1 Ab r(+k 2) 00 r(a+i) r(i-k 2) 1 (1(01a))iTe r~ 2: rk T(1+i-kIrJ -1)L
ik2+1

k 1., 2, k.. I2 =0, 1, 2 ...

k 2 > k1(112)
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SECTION VI

EVALUATION OF THE LAPLACE TRANSFORM

Now we return to Eq. (59). Let G be a particular solution
of the homogeneous part of this equation (that is of Eq. (64))

which satisfies the conditions at a = 0. The definition is found

in Eqs. (74).

The boundary condition at a - aL is derived from the require-

ment that in the original region of definition of the Laplace

transform (m) is bounded (see the discussion preceeding Eq. (63)).

The behavior of the function (m is partially determined
by the inhomogeneous part r(m) defined in Eq. (60)). Assume

momentarily that r(i) - 0 in the vicinity of a = aL. In this region
(m) is then given by a combination of two linearly independent

functions G, of G2 and G.,, say. According to Eq. (66) G = h-Sg,

therefore 4(m)(see Eq.(62))is a linear combination of g2 and g3 "

In the original region of definition of the Laplace transform
(given by the inequalities (63)), the function g3 tends to infinity

at a = aL (this is seen from Eqs. (89) and (77)). At a = a
the particular solution G3 is therefore not allowed to be present.

On this basis one finds for the solution of Eq. (59)

aa

W()(s,a) = k(s) [Gl1(S, () f r(m ) (s, a) G 2(s,a)dd

C=T

-G2 (s'C)f r (m) (s,&)G1 (s,F)da]

a=0

The conditions at a = 0 and a = aL are satisfied by the choice of

the lower limits of the integrals. In the first place this

expression holds in the region of definition of the Laplace

transform. By analytical continuation it is then extended

throughout the complex s plane.
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Here the expression r m) (Eq. (60)) is substituted. This

expression consists of three summands. For the second summand an

integration by parts is carried out. The contributions of the

terms at the limits of the integrals a = 0, and a = aL vanish, the

first one always, the second one for values of s in the original

region of definition of the Laplace transform. With some

rearrangement of the terms one then obtains

p(i)(s,a) = k(s) G (i)(sa)K(G(m)'G 2 ( La)-

G2 (m)(s,a) K( (m),' 1 (m),O,) I (114)

where

(in) (Mn)K( mG ,a,b)

b

=f exp(-Sts(a) + s)b(a)G( m ) + (dts/da)a(a)(3G(m)

a

G(m) [b(a)a (m) - a(B)(dt /do)q % ( da (114a)

t s

Here the arguments of 0(m) and its derivatives are t (a) and a.

The arguments of G and its derivatives are a and s. We set

m (t,a,s) = GCm) (s,a) exp(-(O + s)t) (115)

(m (tcaOs) = ( (t,a,s) exp(-im) (116)

The function W(m) is, according to Eq. (69), a solution of the

original partial differential equation (37) in the t, a, 6 space.

Expressing 0 (m) in terms of 0 by Eq. (53), one then obtains
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27r b
KCm) Ga,b)= -(l/2Tr)ff exp(.Bt.l-b(-a) low - ot w Id a

0=0 a

a a) _ w - (m)]dt d6 (117)

Here it is assumed that the path of integration from a to b in

the &,t plane is given by t = ts (). The subscript s of t has

been omitted; dt stands for (dts/da)da.

The integral K has the form of Eq. (44) and Eq. (44) is

related to the expression (40), (41) and (42) by Eqs. (45).

Accordingly, K can be evaluated in the physical space. For a

closer study we express w (m) as far as possible in physical

coordinates. According to Eqs. (21) and (22), one has

exp t = yh, a = 0

exp t = rh, a = 1

With Eqs. (29) through (32), and (74) one then obtains

- =  (1/5)-s -(l/10)+(s/2) (5s/3)-(i/6)
W sym y a(a L-a) §y(

Wanti = y(i/5)-s a(2/5)+(s/2) (a L)(5s/3 )-(1/6) anti )

-(m) -(4/7)-s (m/2)+2/7)+(s/2) (a-a) (7s/5)+(2/5) (m)w y (a L) § (a)

(118)
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These formulae express w in terms of y and a. At q = a L, is a

regular function of a, and is expressed by coordinates in the

physical plane. It follows that in the vicinity of the curve

S= a L and for y # 0 or r # 0, there is a one to one mapping from

the a,y plane to the x, y or x, r plane. The singular behavior

of the functions w at a = aL which is evident in Eqs. (118), there-

fore carries over to the physical plane. The integration in the

expression K (in the form of Eqs. (40), ('41), or (.42)) will be

extended over the outer boundary surface S of the computed flow

field. One can therefore choose x, y (or r) as functions which

are regular at a = aL* The function 0, 0t and will be regular,

unless a singularity, induced by the shape of the body, propagates

along the limiting characteristic. Singularities in the integrands

of the expressions (40), (41), and (42) therefore appear solely

because of singularities in W. The functions 92 are regular at

a = aL" If one substitutes those into Eqs. (119), then one finds

that the strongest singularities in Eqs. (40), (41), and (42) those

caused by w and w have the form (aL-) (5s/3) - (7/6) for a= 0,

and (GL-G) - 3 / 5 ) + T7s/5) for a= 1. If, on the other hand, the

functions w are formed with .3' (Eq. (77)), then the functions w

are regular because of the factor (l-(a/L)cab in J3" The same

result can be found, from the expression (117) in the a, t plane,

but the discussion is quite cumbersome.

Poles of the expression (114) arise for several reasons:

a. In the region of the s plane where G2(M ) is the dominant

solution, G2 (s,a) will have poles at those points where the

difference of the exponents c-a-b is a positive integer.

b. Poles may arise in the analytic continuation of the function

K( () G2 ' aL' a).

c. The function k(s) may have poles.

To study the poles which arise according to reason b, we

develop the integrand in powers of (aL - a). In general these will

be fractional powers, which depend upon s. Consider an expression
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J C-L)P( s ) d = ps)+l ( L) (S)+1 (119)

Evaluating the expression in the region where the integral exists,

that is for p(s) = -1, one obtains

(-0L)P(S)d= p(s)+l (a L) (120)

The right hand side can be continued analytically throughout the

s plane. A pole arises at p(s) = -1. Assume that this happens

at a point s = s p. Then one has in the vicinity of such a pole

f . 1

-L (S-S) (dp(s)/ds)j + 0(1) (121)
S=Sp

We have found that the powers which arise in K( (m), j(m), ' )

are (a L-a) (5s/3)-(7/6) for a = 0, and (GL-C)(7s/5)-( 3/5) for

a = 1. Poles may therefore arise if, for a = 0

-(7/6) + (5s/3) = -k 3 , k= 1, 2, 3,...

that is for

a = -(3k 3/5) + (7/10)

For these values one has

c-a-b = k3-1

The same result is found for a = 1. Act,,ally, the value k3 = 1

must be excluded. For then c-a-b = 0. In this case 42 = 03'

according to Eq. (101). But we have found that no singularity

will occur if wis formed with §3. In summary, poles
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will arise in the analytic continuation of K for c-a-b kl;

k = 1,2, ....

In the above discussion we have excluded the possibility

that the development of , or * contains nonintegral powers

of (o-aL). If this possibility is admitted, then further poles

will arise in the function K. The particular solution for the

values s pertaining to these poles, give individually the
propagation of a singularity along the limiting characteristic.
This possibility is included in the discussions of Reference 4.

If t, t and 4 are regular at a=oL' then poles in the

function q2 (reason a) and poles in K occur at the same values of s.

The singularities in 42 have the form (s-S1) - const 43 " We

have seen above that the functions 43 do not cause singularities
in K. It follows that no poles of second order will arise by the

coincidence of poles in 2 and in K.

The function k(s) (Eq. 96)) vanishes because of the fac--i
tor (r(l-(c-a-b))) for the values of s for which c-a-b = kl.k I =

1,2,..., unless simultaneously a = -k2 or b = -k2 , k2 = 0,1,2...

This factor cancels the effects of the poles which occur in 2 and

in K( , G2, CL' a, s). If a = 0, then the values of s, for which

c-a-b = k, and b = -k 2 or a = -k2 , are always different. The only

poles which can arise are due to k(s). It has been demonstrated

in the discussion following Eq. (83), that for a = 1, there are

some values of s for which simultaneous c-a-b = kI and b = k 2.

For these poles separate formulae must be derived.

Poles caused by the factor k(s) in Eq. (114) arise, according

to Eq. (96), if a = -k 2 or b = -k 2, k 2 = 0, 1, 2... provided that

c-a-b # kI, kI = 1, 2, 3... One recognizes that one has for all

possible poles either a = -k 2 or b = -k2 ; this implies that 41 is

a polynomial in a. This guarantees that §i is regular at C=aL"

That particular solutions of only this kind will be encountered must

be expected because of the assumption that ,x and *y are free
of singularities at a="
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One has, according to Eq. (100), for these cases

1 = r(c)r(c-a-b) (122)

G2  r(c-a)r(c-b) kl 0, 1, 2...

G = ( _ ) k 2  F ( c ) 0

G r(a) ' k I  0 (123)G2

These ratios can be evaluated for the pertinent values of s = sI .

The specific values for a = 0 are found in Eqs. (79), (80) and

(81). For a = 1, they are computed from Eq. (82). In these cases,

Eq. (115) simplifies to the following expression

( sG (m) (so) = 12 G (m)(a,s K ) (i) ti, Sp) o L )

(S-Sp) (d(k )/ds) G2  2 p s '
p

(124)

In the expression K, defined in Eq. 117), we have written (i)

inseadof heargument 2~m
instead of the aGm) which might have been used just

as well, to emphasize the significance of the particular solutions
(i) In these cases, the two integrals in Eq. (114) can be

combined. (The limits of the integral become then 0 and aL. In

the vicinity of a point s = s the a-dependence of (m (s,i ) is

solely introduced by G2  )(as ). The ratio GI/G 2 is computed

from Eqs. (122) and (123).

In cases where at a point s = sp one has simultaneously

b = k 2 , k 2 = 0, 1, 2... and c-a-b = e = kI, kI = 1, 2, 3... one

obtains a finite limiting value for k(s), which can be evaluated

by Eq. (98). We distinguish between cases, where k 2 < kI1 and

k 2 > kI.

If k2 < kI, then, according to Eq. (102), the function

remains finite in the limit s - sp. In this limit §2 consists of

the polynomial g2 ' and the function q3 multiplied by a constant.
Poles arise in K, because of g2 "
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The behavior of * (m)(s,a) in the vicinity of sp is computed

by applying Eq. (122) to the expression (118), substituting for
W(m) the expression (117) formed with g2 " The procedure is rather

complicated because it is based on a series development of the

integrand. If it should be needed, one would probably carry it out

in the physical plane, on the basis of Eq. (40), (41) or (42). At

the moment we simply write

_ 1 Residual of K(', - at s =
K(a,s) = 2 P S... sp

(The second limit of the integral is unimportant.) Then, one has,

using Eq. (105)

k r(c)r(k1 )

(m)( p p r(kl-k 2 )F(k 1 +a) G2 (,Sp

S(-S)

Residual of K( , -2 ' L'') at s = sp, k2 < k1  (125)

The function 42 consists for k 2 > k, according to Eq. (112), (a) of

a polynomial 12 which contains powers of (1 - (a/cL)) up to kl-i

with finite coefficient, (b) of a pole whose a dependence is given

by the polynomial q3 (in which k2 is the maximum power of (l-/L),

and (c) an infinite series starting with (1-a/a L)kl A pole arises

because of the contributions a and b. Invoking Eq. (107) one

obtains

m (s,a) 1 k(sP) (-) k l - k2 2(c)r()+k2 )

s-sp r(a)r(l+k1 ) G3 (a,s) x

Residual of K(O, =(2) a at s =

1 r(a+k 1)P(l+k 2 ) (m) 1
deJdi r(a)r(k 1 )r(l+k 2 -kl)F K($, (3 , 0, aL ,  (126)
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SECTION VII

THE SOLUTION IN THE PHYSICAL PLANE

In Eq. (52) a Fourier decomposition with respect to e of the

solution of the boundary value problem formulated in Section III

has been made. The solution for one Fourier component, expressed

by means of its Laplace transform is given by

+io

( i) t (s,a) exp(st)ds (127)
2ri f

-ii

To ensure the behavior postulated in Eqs. (47) and (48), the path

of integration must be chosen somewhat to the right of the lines
Re s = (2/5) for a = 0, and Re(s) = -(2/7) for a = 1. How far
this path can be shifted to the right depends upon the location of

the neighboring poles in the s-plane.

The integrand of Eq. (127) depends upon s. The integrand

becomes small for negative t if Re s is large and positive. We

close the path of integration by a sequence of circles in the

right half of the complex plane whose radius goes to infinity. It

is shown in Ref. 4 that in a certain well defined region in the

left half of the t,a plane the contribution to the integral due

to the integration along these circles vanishes in the limit of

an infinite radius. In this part of the t,a plane the functions
(m)(t,a) can then be represented in terms of the residuals at

(mn)the poles of (m (s,a). With respect to these poles one travels

in the counterclockwise direction.

If the far field conditions are satisfied, then, according

to the discussions of Section II following Eq. (48), 0 for

t < ts(a). The region in which the representation of #(m) in

terms of the poles in the right half of the complex s plane is

valid, lies within the region t < ts (a). In order for (m) to be

identically equal to zero for t < ts (a) it is necessary that
residuals at all of these poles vanish. This observation is

decisive for the formulation of the far field conditions.
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The path of integration can also be closed by circles in

the left half of the s plane and the contribution of these

circles vanish for a well defined region in the right half of the

t,a plane. In the present context one is not interested in a
(in)representation of m (t,a) in terms of the residuals, except for

the contribution of those poles, which give a modification of the

basic flow field.

Expressions for (s,a) valid in the vicinity of the poles

have been derived in Section VI. In the vicinity of a pole with

s = si they have the form
1

1 ci G~m) (asi
s-s. i,m 2 1

1

where ci,m is a constant.

Closing the path of integration by circles in the right half of

the complex s plane, one obtains

M)G~ m) (G s i exp(sit) (128)
d1m(t,G) =- Cim2

i

and

(t,oO) = -57 5 cim G (a ,si, exp(si,t) exp(ime) (129)
M= - 00 ±

The summation must be extended over all poles to the right of the

lines

Res = 2/5 for a = 0
(130)

Res = -2/7 for a = 1

The individual terms are particular solutions of the partial

differential equation (37), which is equivalent to Eqs. (12) or

(13).
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The inner sum converges, according to Ref. 2 in that

region of the t,o plane for which the closing of the path of

integration in the complex s plane is permissible.. This region

usually does not extend to the curve t = ts (a) (which is the map

of the outer surface s of the computed flow field). In order to

express the postulate that - 0 to the left of t < ts (a), it

suffices if this condition is imposed in a smaller region. One

obtains the condition ci,m= 0 for all m and all poles to the

right of the lines characterized above. This leads to

K(0, wm (t, e ) o" G1 L ) = 0 (131)K, 2 L

where K is defined in Eq. (117). The notation used here is the

same as in Eq. (124). K is best evaluated in the physical plane,

by means of Eq. (40), (41) or (42). The expressions w2 are defined

in Eqs. (118). Here the function 42' or also the functions §i'

which for these poles are proportional to 42' must be substituted.

They are defined by Eqs. (77).

One needs for the evaluation in the physical plane
o (x,y) -i.-.. -1/3 22/5 -i

x = P 1 (10/3) (Y+1) (/y 2 ) (a+(4/3)) a = 0

aa(x,y) = (4/3)y(a/y 2) (2-a) (a+4/3)- Iay =0

(132)
o (x,r) =- 1-1 /3 2 2/7 -i

x = P 1 ( 7 /10)(y+l) (a/r 2 ) (a+(1/5)) a = 1

9a(xr) - (2/5)r(/r 2 ) (1-2a) (o+(1/5)) - I  a I

One has

a/y2 = (Y+) 5 / 6 115/2 (-x) 5/2 (2-a)5/2  a = 0

ar 2 = (Y+) 7 / 6 p7/2 (-x) 7/2 (1-2) 7/ 2  a = 1 (133)
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These expressions are used in a vicinity of = 0.

= -1 -1/3 (e2 ) +/0= (10/3) (Y+1) (a/y 2 )

(Cr (4/3)) ( - a) L_)Sp/3) -(7/6)

[(Sp,/2) - (I/10)]1 (aL-a)-( (5Sp/3)-(i/6)) a]§ (a,Sp)

+ a(aLa)d4/da}

aw anti _ (10/3) -i -1/3 (a/y2 ((sp/2)+(3/10))

(a+(4/3))-1 ( 1/2 (aLa) (5s P/3)-(7/6)

Ca) (5 /3) - (1/6 ) )a] -+o(o-o) (d4/da) 4

2 y(a/y 2 ) (Sp/ 2 )+( 9 /lO) (5s/3)-(7/6) (a+(4/3))'1

[-(10/3) ((sp/ 2 )-(1/10)) (aL-a)- (sp/3)-(1/6) ) (4/3) (2-a) ] (a,p)

+(4/3) (2-a) (aL-a) (/ao)} (134)

(wanti)/y = (a/y 2 ) (Sp/2 )+(2/
5 ) (aL-a) (5sp/3)-(7/6) (a+(4/3))-1

[(10/3) ( (s p/2)- (1/10)) ((YL-a)a-((5S p/3)-(1/6)) (4/3) (2-a)a

-(2/3) (2-a) (aL-a)]+( 4 /3 ) (2-a) (aL-a)a(d~/do}
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aCw (m,)/ax) P- -(7/10) (y+l) -1/3 am/2 (a/r 2 ) (S/2).+(.4/7)

(a+ (1/5) ) -1 (GL-a) (7sp/5)-(3/5)

f{[((m/2) +(p /2) +(2/7) ) ( L-a)- ((7s p/5) +(.2/)) ] (a,s P)

+ (aL-a) (d§/da)l exp(-me) (135)

One has

D m/y m) (m)

r /( Cos +im (r sin 6

(136)
D(m)/ _ (mn) (mn)

aw(A /z r sin e -im - cos ear r

Here

aw(m)/3r = exp(-imS)a ( m/ 2 ) - / 2 (/r 2p/2)+(11/14.

(CL-a) ( 7 $p/5)-(3/5) (a+(1/5))- 1  (137)

{[(aL-a)Cm/5) (1-2a)-(14/5) ((sp/2)+(2/7))a) -

((7sp/5) + (2/5))(i-2a)G]g+ (1-2a)a(aL-.a)ad§/da}

for m = 0, this reduces to

Ow(0) a g1/2 r 2 ) ( P/ 2 )+(11/14) )(7sp/5)-(3/5) 0+ 1--r (a!r ) Sp2 (La (+1/))

I(a-a) (- (14/5) (Sp/2) +(2/7))-(7Sp/5) +(2/5) (1-2a) ] (0)

+ (1-2a) (aL-a)d§(O)/da} (138)
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The values of sp are given by Eq. (79) and (81). For Symmetric

solutions, one has

sp = (2/5) + (6k/5), k = 1, 2,... (139)

The value k = 0, which is included in Eq. (79) must be omitted

because it lies outside of the region given by Eq. (130), it

amounts to a change of the intensity of the basic singularity, and

such a change must, of course, be admitted. For antisymmetric

solutions, one has

sp= 1 + (6k/5) k = 0, 1, 2,... (140)

The values of s for a = 1 are computed from Eq. (82). The

value for m = 0 and k = 0 must be omitted because they lie outside

(although at the border) of the region characterized by Eq. (130).

According to Eq. (100), which is valid for these poles, the

function §2 is proportional to §1. As long as the pole strength

is set equal to zero, the factor of proportionality is, of course,

unimportant. It is best to compute §2 from the first of Eqs. (77).

There exists the possibility to extend the present approach

to boundary conditions for a free stream Mach number close to one.

In such cases one would need the actual strength of the poles.

This (and other factors) have therefore been carried in the analysis.

Assume that a correction to the flow field has been computed

with the use of the far field conditions Eqs. (131). As a second

step, one adjusts (if necessary) the intensity and the origin for

the basic singularity. This is done on the basis of Eqs. (89)

and (90), which express the effect of a change of V and of the

location of the origin by means of certain particular solutions.

For this purpose, one closes the curve of the original

inversion integral by circles in the left half of the complex s

plane. One then obtains

)(t,a)im G W (a,s i ) exp(sit) (141)
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The summation is over all poles that lie to the left of the line

given by Eqs. (130) or on this line. The expression is slightly

different for poles where simultaneously c-a-b = k1, k1=1,... and

b = -k2, k2 = 0, 1, 2,... But in the present discussion these
poles are of no interest. The values of cimequal to the residuals

at the individual points, which are given by Eq. (124), (125) and
(126). The adjustment of the basic solution is based on Eqs. (89)

or (90).

This requires for a = 0 that we find the contributions of

G (a,2/5), G (y,-2/5) and G a (a-3/5). The correspondingsym, sym anti
contributions for a = 1 are G (0 ) (a, -2/7), G(O)(c,-(/7)), and

G(1 )(0, -9/7). Let us denote the constants ci'm in the same

manner as the corresponding functions G. These constants can be

evaluated numerically. Combining these expressions with the

basic flow, one obtains an expression (for a = 0)

0 = y2 ) + Csym,2/5 Gsym (c, 2/5) exp(2t/5)

+ C sym,2/5 G sym(a,-2/5) exp(-2t/5)

" canti,_3/5 Ganti(a,-3/5) exp(-3t/5)

According to Eq. (89) this is an approximation to

0 = (y - Ay) 2/ 5 (V + AP) 3 T(T) (142)

6ith defined in Eq.(85)) if one sets

-2

Ap = (1/5)p C

Ax = (Y + 1)1/3 -2 sy,_2/5 (143)

Ay = -2p -3 canti,_3,5

A similar procedure is applied for a = 1.
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In the following iteration step the expression * is then
used for the basic flow field. This correction needs to be carried

out, only if A, Ax, and Ay are fairly large. Sometimes it may

suffice, if one makes a correction only for the dominant term, which

is given by Ap.
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SECTION VIII

NUMERICAL IMPLEMENTATION

It is assumed that an approximation to the flow field is

available and that one wants to improve it iteratively. One

needs for the application of the far field a characterization of

the basic field for the outer region by the value of p and the

coordinates of the origin to which it refers. The correction to

the flow field is then computed using Eqs. (131) as conditions

to be imposed at the distant boundary of the computed flow field.

For the field so obtained determines, in a second step, corrections

to the basic field.

The computed part of the flow field will frequently consist

of one portion which is given by the result of the previous

iteration and a correction to it, which is to be determined. Let

D in be the sum of these two contributions. The outer fieldinner
is given according to Eq. (11) as the sum of the basic field c00
and a correction 0. %0 is defined by Eqs. (6), (7), and (10).

The function f(C) is given in parametric form in Eqs. (27) and (28)

for a = 0 and a = 1, respectively. The position of the origin with

respect to which c(via x,y(and z)) is defined may vary from

iteration to iteration. The conditions (131) refer to

D inner - 00 (144)

In the application of Eqs. L131) one must therefore have a

characterization of inner Cand its gradient), for instance by the

values of 0 at a system of grid points, or in a finite element

characterization. Besides one needs the function 0 and the
(m)weight functions" w

Assume that the outer boundary S of the computed flow field

is defined by the coordinates at a finite number of points. The

functions 9 have the form G(C,s) exp (st) = G(,s)p. The

function G(U,s) oscillates in the subsonic region with an amplitude

which does not change much even if s- . If along the outer boumary

58



of the computed region p changes considerably, then there is a

danger that the functions U for large values of s are close to

linear dependence. (For large values of a the functions j are

then important only at those points where p is large.) It is

therefore desirable to choose the outer surface of the computed
flow field close to a surface p - const (see Figure 1).

The points (x,y), (x,r) or (x,y,z) used in the computation
of the inner field are considered as fixed. A subscript 0

characterizes the coordinates of the current origin used for the

representation of the outer flow field.

One computes from Eq. (7) for the chosen points of S

= (Y+l)-/(x-x 0 )(y-y 0) -  for a = 0

(145)

= (y+l) -/ 3 (x.x 0) r4/7 for a = 1

where

i =[(y - y0 )
2 + (z - 0)2]1

/ 2

or in axisymmetric flow,

r (146)

One has, furthermore
Y-Y0e = arctg -r

Next, one determines

and then finds a, either from a table, or by a solution of the

second of Eqs. (27) or (28), for instance by means of a Newton

iteration. This then allows one to determine f from the second of

Eqs. (27) or (28) and f = 3 from Eq. (10). Then one obtains

00 from Eq. (6).
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0 = (y - Y0 ) 2/ 5 f for a = 0

0 = - 2 / 7 f for a = 1

These expressions are used in Eq. (144).

The integrals (131) will probably be evaluated in the form

of Eqs. (40), (41), and (42) for, respectively, three-dimensional

and plane flow in Cartesian coordinates, and three dimensional

flow in cylindrical coordinates. Axisymmetric flows arise by

specialization of Eq. (42). The coordinates used in these

systems are those used for the computation of the inner flow field.

The functions w to be used are computed from Eq. (116) in the

coordinates of the outer field. The functions a are defined in

Eqs. (118). The function § occurring in Eqs. (118) are defined

in Eq. (77) in terms of a. Here a = 16/3 for a = 0, and a = 6/5

for a = 1. The values of a, b, and c occurring in these formulae

are found in Eq. (76), the value of R, which occurs here is given

in Eq. (72). The values of s for which these functions w are to

be given for the plane case in Eqs. (139) and (140). For the

three-dimensional case, they are computed from Eq. (82), with the

provision taken from Eq. (13) that Re(s) > - 2/7. The number of
(m)

functions ( to be used equals the number of parameters which

one uses to characterize the function 0 at the outer boundary

surface s.

The formulation of the conditions Eq. (131) for a sufficient

number of functions w(m) gives as many linear relations of a

global character between the x, , and *y at the outer boundary
as are necessary for the computation of the flow field.

After the values of *, *t and Oa are found one uses Eqs L1431

and (142) to find a readjusted basic field 00 which is to

be used in the next iteration step. The constants csym,2/5,

care the residuals of (s,a) at the respective poles.

They are found from Eq. (124) with the definitions Eqs. (122) or

(123).
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The values of s needed for this adjustment are (2/5) and -2/5)

for the symmetric solutions and (-3/5) for antisymmetric solutions

in the plane case. For the case a = 1, the values of s are taken

from Eq. (90), they are s = -2/7 and s = -6/7 for m = 0, and

s = -9/7 for m = 1.

In evaluating the integrals K, one must observe the behavior

of the integrand at the limiting characteristic a = aL' which is

determined by the behavior of w. One recognizes from Eq. (118)

that for a = aL and y regular

W (OL - )(5s/3) -(/6) for a = 0

W (aL - a)(7s/5)+(2/5) for a = 1

One obtains, in particular

W (aL - )1/2 s = 2/5

-5/6W (aL - -a) s = -2/5 a= 0

-7/6W~ (aL _) s =-3/5

~ (a - 0) for s = -2/7

W (aL - 4/5 for s = -6/7 = 1

(aL - a) for s = -9/7

Notice that in the integral K first derivatives of w are encountered.

Except for the integrands for s = 2/5, (a = 0) for which the

integral K is defined as an improper integral and for s = -2/7 for
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a 1, for which no singularity is encountered, the integrals

are defined by analytic continuation (Eq. (121)).

one needs for this purpose the first few terms of a power

series development of 0 and its gradient in terms of (a - a L) or
an equivalent quantity. They must be extracted from the numerical

data for *.Only a few of these terms can be obtained with
4 acceptable accuracy. The integral K is evaluated by one of the

familiar procedures for 0< a a GLand by means of formulae

developed from Eq. (121) for the region a1 0 a 0. L

For the values of s which appear in Eq. (131) the integrals

are integrable. It may, however, be worthwhile to examine to what

*extent the behavior of the function w3 at a a must be taken into

account. These are the main considerations needed for a practical

application.
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SECTION IX

CONCLUDING REMARKS

The far field conditions (Eq. (131)) are global conditions;

that is, they give relations connecting all points of the surface S.

This makes their application in conjunction with an iterative
procedure (as for instance the Murman Cole iterations) rather

difficult. They are rather well suited for a correction to an

existing field by means of a Newton-Raphson iteration in combination

with a direct elimination procedure in the resulting linear equations.
In such a procedure the sequence of the elimination of the unknown

is important. One best arranges the problem in a manner that one

obtains a large block multidiagonal matrix. The vector of the

unknown is then partitioned, the first of the subvectors which

arise in this manner express data at the surface of the body for

which the flow is computed, the last of the subvectors gives data

at the surface S. Usually the individual blocks are banded matrices,

while the matrices derived from Eq. (131), which form the last row

of blocks, are full. This does not matter because in the

elimination process for the subvectors, one obtains full matrices

rather quickly. These matrices have the same size as the matrices

expressing Eq. (131). In any case, it seems desirable to use a

coarser mesh at larger distances from the body.

The conditions Eqs. (131) are exact, provided that the

linearization in the outer field used in Eq. (11) is applicable.

The global character of these particular solutions is unavoidable.

Reference 2 derives for another problem approximate conditions,
valid for large distances, which have a local character. They

would then be applicable for an iteration of the Murman-Cole type.

The principal idea is to set up relations which are compatible with

the dominant terms at infinity. The dominant term in the basic

flow is

Sy2/5 f(0 for a = 0

-2/7r f() for a = 1
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Along a line C = const one has

d 2 1
3-- i 0 = 0 fort= 0

dO + 1 0

d- 7 y for

These are localized for field conditions. The first perturbation

occurs for a = 0, at s = 0 according to Eq. (80). This leads to

a boundary condition

€2 + I) ( _- 2 1 o

(The derivatives are to be formed along lines = const.)

Indeed, if * = y2/5 kl (i), then the condition is satisfied because

of the second operator; if one substitutes 0 = k2(W), then the

second operator gives -2/5(i/y)k 2 (0), which gives zero if the first

operator is applied to it. Here kl(t)and k2() are arbitrary

functions of . The second derivative with respect to y must then

be expressed by derivatives along the surface S using the partial

differential equations for 0.

In a similar manner, one can obtain improved conditions for

the three-dimensional case. Conditions of this kind are, of course,

rather attractive, and they are preferable to such assumptions as

= a*x (a sonic free jet) or 0. = 0 at a distant line which actually

means a rigid wind tunvnel wall.

The use of the rigorous conditions would allow one to reduce

the size of the computer flow field. Whether this is worthwhile

from the point of view of computational economy remains to be seen.

The present article provides the background for making this comparison.
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